Учёные десятилетиями пытаются ответить на вопрос, полезно ли включать фоновую музыку на учебных занятиях. Рассказываем, что об этом известно.
Многие преподаватели и тренеры убеждены в учебной пользе от провалов и неудач. Но чтобы эта польза действительно была, нужно соблюсти ряд условий.
Математические приемы в физике учитель использует весьма часто:
- для выражения законов в общей и точной форме;
- для вывода тех или иных закономерностей из некоторых теоретических предпосылок;
- для преобразований выведенных формул в другие;
- для нахождения таких величин, измерение которых непосредственно невозможно;
- при разнообразных расчетах и решении задач.
Математический язык при изучении физики неизбежен как средство изящнейшего выражения законов и кратчайшего выражения законов из опытных исследований, для теоретического обоснования ряда основных положений.
Математикой учителю широко приходится пользоваться при решении физических задач. С самого начала изучения курса физики учащиеся приучаются к пользованию математическими символами и к буквенным формулам. После изучения определенного курса математики учащиеся без труда воспринимают, что математическая формула служит для более краткой, сжатой записи соотношения между физическими величинами, а затем и для более удобного производства вычислений.
Конечно, учителю приходится приучать учащихся вкладывать в математические обозначения реальное содержание физического смысла.
В старших классах роль математики в преподавании физики значительно повышается. Здесь, наряду с экспериментальным изучением физических явлений, учитель физики может при исследовании физических явлений широко применять и математический анализ, поскольку это возможно по уровню математической подготовки учащихся.
Например, в курсе физики X класса при изучении темы «Гармонические колебания» учащиеся уже знают из курса алгебры за IX класс, как связаны между собой ускорение и координата, скорость и координата, т.е., что мгновенная скорость представляет собой производную координаты по времени, а ускорение – вторая производная координаты по времени.
Отсюда делается вывод: согласно этому уравнению при свободных колебаниях координата х изменяется со временем так, что вторая производная координаты по времени прямо пропорциональна самой координате и противоположна ей по знаку.
Далее учитель опирается на математическое положение о том, что функция синус и косинус обладают тем свойством, что вторая производная функции пропорциональна самой функции, взятой с противоположным знаком. Значит, координата тела, совершающего свободные колебания, меняется с течением времени по закону синуса или косинуса. И отсюда дается определение гармонических колебаний. Периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса, называются гармоническими колебаниями. Затем гармонические колебания записываются с помощью косинуса и синуса. Смещение колеблющейся точки в любой момент времени:
Воспитание толерантности школьников на уроках русского языка
Современных людей волнуют процессы, происходящие в обществе, - рост агрессивности и конфликтных ситуаций в межличностных отношениях. Остановимся подробнее на толерантности. Толерантность – готовность к осознанным личностным действиям, направленным на достижение гуманистических отношений между людьм ...
Анализ учебно-методического обеспечения процесса обучения математике с
точки зрения выявления его потенциала для развития одарённых учащихся
Проанализируем учебные программы и учебники по математике для 5-6 классов с целью выявления в них акцента на развитие именно одаренных учащихся. Учебная программа, как основной документ общеобразовательного учреждения, менялась в процессе развития системы образования. Так, в 1923 г. стержнем школьн ...
Период двигательно-зрительной установки психики
Наиболее нормальным педагогически является гармоническое развитие всех функций ребенка, предоставление ему всех возможностей полноты жизнеощущения. Его творческая активность должна проявляться во всех направлениях сначала в целях внутренней организации его психики, его впечатлений, а потом и в целя ...
Ей уже посвящают учебные курсы в Гарварде, Стэнфорде и других известных вузах! В том числе — юридические и предпринимательские. Рассказываем, почему.