Учёные десятилетиями пытаются ответить на вопрос, полезно ли включать фоновую музыку на учебных занятиях. Рассказываем, что об этом известно.
Многие преподаватели и тренеры убеждены в учебной пользе от провалов и неудач. Но чтобы эта польза действительно была, нужно соблюсти ряд условий.
2) решения задачи в рамках математической теории (решение внутри модели);
3) перевода полученного результата (математического решения) на язык, на котором была сформулирована исходная задача (интерпретация полученного решения).
Следует отметить, что в школе в основном уделяется внимание работе над вторым этапом моделирования, в то время как формализация и интерпретация остаются недостаточно раскрытыми. Необходимо организовать обучение учащихся элементам моделирования, относящимся ко всем трем этапам. Важным средством обучения элементам моделирования, относящимся к этапам формализации и интерпретации, являются сюжетные задачи. Сюжетной задачей называют задачу, описывающую реальную или приближенную к реальной ситуацию на неформально-математическом языке. С этой точки зрения любая задача, возникающая на практике, является сюжетной, однако часто она может не содержать достаточных для решения числовых данных. Такие задачи называют задачами-проблемами. Для построения их математической модели нужно найти достаточное количество числовых данных. Школьные учебники почти не содержат задач-проблем. Учащимся, как правило, сразу предъявляется словесная модель задачи, поэтому представления о характере отражения математикой явлений, описываемых в сюжетных задачах, часто оказываются весьма примитивными. Это происходит вследствие того, что этап формализации при решении школьных сюжетных задач оказывается представлен слишком узко, т.е. нет условий для содержательного раскрытия деятельности, проходящей на этом этапе математического моделирования. Поэтому надо искать пути содержательного раскрытия и конкретизации этапов формализации и интерпретации математического моделирования. В частности, эта проблема может быть реализована на пути решения так называемых прикладных задач. Для подготовки к обучению в профильных классах уже в 5-6 классах целесообразно использовать прикладные и учебно-прикладные задачи, которые позволяют учить школьников следующим действиям, характерным для этапов формализации и интерпретации:
замене исходных терминов выбранными математическими эквивалентами;
оценке полноты исходной информации и введению при необходимости недостающих числовых данных;
выбору точности числовых значений, соответствующей смыслу задачи;
оценке возможности получения числовых данных для решения задачи на практике.
Выполнение действия замены исходных терминов выбранными математическими эквивалентами основывается прежде всего на жизненном опыте учащихся, т.е. знании терминов, встречающихся в быту или при изучении других предметов, которые могут быть заменены математическими понятиями и отношениями. Из этого следует, что в системе задач школьных учебников должно быть больше задач, содержащих термины из различных научных областей, но не требующих длительного и громоздкого объяснения их сущности. Кроме этого, задачи расширяют словарный запас учащихся, знакомят с новыми интересными фактами из разных наук.
Обучение замене исходных терминов может происходить при формировании понятий. Например, при изучении понятия окружности целесообразно использовать следующие задачи:
Задача 1. Какова длина обода колеса велосипеда, если длина спицы равна 35 см.
Задача 2. Обхват дерева равен 1,5 м. Найти толщину дерева.
Развитие зрительного восприятия слепых с остаточным зрением и использование
его в процессе обучения
Развитие и использование в процессе обучения зрительного восприятия у слепых детей с остаточным зрением и у слабовидящих является коренной проблемой тифлопсихологии и тифлопедагогики. Это обусловлено тем, что в настоящее время в школах для детей с нарушениями зрения не более 10 % обучающихся тоталь ...
Осуществление связи с математикой в обучении физике
Математические приемы в физике учитель использует весьма часто: - для выражения законов в общей и точной форме; - для вывода тех или иных закономерностей из некоторых теоретических предпосылок; - для преобразований выведенных формул в другие; - для нахождения таких величин, измерение которых непоср ...
Причины
употребления алкоголя и других психоактивных веществ
К сожалению, влияние макросоциума на общее развитие ребенка, особенно пока он мал, обычно не дооценивается. Однако через настроение родителей и близких родственников, их отношения к другим людям и событиям ребенок четко улавливает два основных параметра функционирования общества в целом: благополуч ...
Ей уже посвящают учебные курсы в Гарварде, Стэнфорде и других известных вузах! В том числе — юридические и предпринимательские. Рассказываем, почему.