Учёные десятилетиями пытаются ответить на вопрос, полезно ли включать фоновую музыку на учебных занятиях. Рассказываем, что об этом известно.
Многие преподаватели и тренеры убеждены в учебной пользе от провалов и неудач. Но чтобы эта польза действительно была, нужно соблюсти ряд условий.
1) 13; 2) 12; 3)10; 4) 23; 5) 22; 6) 20; 7) 33; 8) 32; 9) 30; 10) 43; 11) 42; 12) 40; 13)53; 14) 52; 15) 50; 16) 63; 17) 62; 18) 60; 19) 73; 20) 72.
1.2. Вася записывает последовательность чисел. Определите правило, по которому он записывает каждое следующее число и запишите несколько следующих: 12, 31, 24, 12, 51…
(Поставив запятую после каждой третье цифры, ответ становится очевиден).
2.Тип задачи: Задачи с несформулированным вопросом
2.2. В двух кассах магазина находится 14000 рублей. Если из первой кассы переложить во вторую 1500 рублей, то в обеих кассах будет поровну. (Сколько денег было в каждой кассе?).
2.3. У мальчика столько сестер, сколько и братьев, а у его сестры вдвое меньше сестер, чем братьев (Сколько братьев и сколько сестер в этой семье?).
3. Тип задачи: Задачи на выделение геометрических элементов и фигур из общего фона
3.1. Разрежьте фигуру (см. рис.) на 5 частей одинаковой формы и одинакового размера так, чтобы в каждую часть попало ровно по одному серому квадратику.
Решение.
3.2. Какой фигуры нет на этом рисунке?
A) круга; B) треугольника; C) квадрата
D) прямоугольника; E) все перечисленные фигуры есть.
Упражнения на развитие восприятия
1.Тип задачи: «Поиск информации»
1.1. Дана 100-клеточная таблица, заполненная цифрами (графическими изображениями, геометрическими фигурами разной формы и двух цветов, с набором букв). Задание: подсчитать, сколько раз встречается каждое из чисел от 0 до 9 (сколько раз встречается тот или иной знак, фигура, цвет и т.п.).
2.Тип задачи: Задачи на метод «проб и ошибок»
2.1. Между некоторыми цифрами 1, 2, 3, 4, 5 поставить знаки действий и скобки так, чтобы значение выражения было равно 40.
2.2. Ученик переписал числовое выражение 9664 : 32 – 2 · 195 – 37 · 5, значение которого равно 3000. Где в этом выражении должны стоять скобки?
4.Тип задачи: Задачи с неполным составом условия
4.1. Класс получил общие и простые тетради – всего 42 штуки. Общая тетрадь стоит 6 рублей, а простая 1 рубль. Сколько тех и других тетрадей получил класс? (Нужно знать общую стоимость тетрадей).
4.2. В библиотеке всего 6100 книг на французском, английском и русском языках. Французских книг больше английских на 25%. Сколько книг на каждом языке? (Нет данных о количестве книг на каком-нибудь одном языке).
5. Тип задачи: Задача с избыточным составом условия
5.1. На автостоянке находятся 40 машин – автомобили и мотоциклы. У них вместе 100 колес и 40 рулей. Сколько тех и других машин?
6. Тип задачи: Задачи с взаимопроникающими элементами (способность быстрого переключения с одного аспекта восприятия на другой).
6.1. Представьте первые пятнадцать чисел натурального ряда, обходясь лишь одной цифрой 2, применяя ее только 5 раз и используя арифметические действия
(Ответ: 1 = 2 + 2 – 2 – , 2 = 2 + 2 + 2 – 2 – 2, 3 = 2 + 2 – 2 + , 4 = 2 • 2 • 2 – 2 –2, 5 = 2 + 2 + 2 – , 6 = 2 + 2 +2 + 2 – 2 , 7 = 22 : 2 – 2 – 2, 8 = 2 • 2 • 2 + 2 – 2 , 9 = 2 • 2 • 2 +, 10 = 2 + 2 + 2 + 2 + 2, 11 = 22 : 2 + 2 – 2, 12 = 2 • 2 • 2 + 2 + 2, 13 = (22 + 2 + 2) : 2, 14 = 2 • 2 • 2 • 2 – 2, 15 = 22 : 2 + 2 + 2.)
Задачи на развитие памяти
1 .Тип задачи: Задачи с различной степенью наглядности решения
1.1. Юля и Саша решили посчитать кусты пионов, которыми был засажен школьный двор. Обход пришкольного участка дети совершили в одном направлении, но считать начали с разных кустов. Пион, который у Юли был восемнадцатым, у Саши он был пятым, а пион, который у Юли был пятым, у Саши был – сорок вторым. Сколько же кустов пионов росло вокруг пришкольного участка? Объясни числовые равенства: 1) 18 + 5 = 13 (л);
Коррекция нарушений общения
Прежде всего, в ходе игровой психокоррекции детей с нарушениями общения необходимо снизить конфликтность, снять неадекватные стереотипы поведения, разрешить основные психологические коллизии ребенка. Следует отметить, что эффективность коррекции достигается чаще всего в процессе коллективных игр ...
Виды субкультур
Г.С.Абрамова отмечает, что это могут быть возрастные субкультуры (подростковая, юношеская, пожилых людей), профессиональные субкультуры (врачей, юристов, музыкантов, педагогов и т.д.), территориальные (сельские, городские. В том числе наиболее мелкие – дворовая, центровая, хуторская и т.д.), предме ...
Учет успеваемости на уроке музыки
Урок музыки так же, как и любой другой учебный предмет в школе, нуждается в такой организации, чтобы учитель мог наблюдать за продвижением своих учеников на каждом этапе работы: в процессе усвоения новых музыкальных знаний, умений и навыков при повторении пройденного, т.е. учет знаний должен входит ...
Ей уже посвящают учебные курсы в Гарварде, Стэнфорде и других известных вузах! В том числе — юридические и предпринимательские. Рассказываем, почему.