Эффект Моцарта: музыка помогает учиться или мешает?

Учёные десятилетиями пытаются ответить на вопрос, полезно ли включать фоновую музыку на учебных занятиях. Рассказываем, что об этом известно.

На ошибках правда учатся? Исследователи уверяют, что нет — но это можно исправить

Многие преподаватели и тренеры убеждены в учебной пользе от провалов и неудач. Но чтобы эта польза действительно была, нужно соблюсти ряд условий.

Методические особенности постановки обучения математике в 5-6 классах, направленного на развитие одарённых детей

Материалы » Особенности развития одарённых детей в процессе обучения математике в 5-6 классах » Методические особенности постановки обучения математике в 5-6 классах, направленного на развитие одарённых детей

Страница 2

Использовать систему развивающих задач можно на уроках любого вида как по способу проведения (беседы, экскурсии, самостоятельная работа учащихся, лабораторные и практические работы), так и по форме проведения – уроки в форме соревнований и игр (конкурс, викторина, эстафета, ролевая игра); уроки, основанные на формах и жанрах общественной практики и публичных форм общения (семинар, исследование, изобретательство, репортаж, рецензия, пресс-конференция, дискуссия, устный журнал); уроки, основанные на имитации какой-либо деятельности (патентное бюро, ученый совет, заочная экскурсия, путешествие в прошлое); с использованием на уроке традиционных форм внеклассной работы (диспут, судебное заседание, спектакль); интегрированные уроки (одновременно по двум предметам, одновременно для учащихся разных возрастов, с элементами историзма и т.д.), сочетание различных форм.

Исходя из вышеизложенного материала, представим возможную организацию деятельности учащихся и учителя на уроке, направленной на развитие одаренных детей.

Основная деятельность учащихся, направленная на развитие средствами математики на каждом этапе урока, состоит в решении специально подобранных математических и учебных задач, которые наиболее целесообразно решать на данном материале и необходимо решать для достижения поставленных целей урока. В решении задачи, особенно, развивающего характера, самым важным является этап поиска решения, обладающий неограниченными возможностями для всестороннего развития ученика, особенно для развития его способностей.

Поиск плана решения задачи по математике может осуществляться, во-первых, путем общего анализа (аналитический метод), т.е. рассуждений «от вопроса к данным»; во-вторых, с помощью рассуждений «исходя из данных задачи к вопросу» (синтетический метод); в-третьих, с помощью предметной или графической модели (схемы) задачи, а также иллюстрации к ней. Приведем общие рекомендации и советы по осуществлению поиска решения задачи для одаренных учащихся. Основные из них:

1) проанализировать содержание задачи и, если нужно, построить ее схематическую или другую наглядную модель; 2) распознать вид (тип) задачи, т.к. в результате можно получить готовый план ее решения (метод, прием, алгоритм); 3) сравнить задачу с ранее решенными задачами, если нужно, разделить задачу на части, сравнимые с ранее решенными задачами, к которым ее можно свести.

Таким образом, и особенно при поиске решения развивающих задач, ученику необходимо уметь использовать анализ, сравнение, обобщение, классификацию; умозаключения по индукции, аналогии, дедукции; включать процессы памяти, представления и воображения, интуицию, элементы творчества. Здесь возможны пути проб и ошибок, использования собственных наблюдений и усвоенных закономерностей решения задач. Для организации такой деятельности учащихся мы используем обучение их приемам выполнения соответствующих действий, которые представляются в наглядной форме или в устной беседе (для всех учащихся класса и индивидуально для учащихся с разным типом мышления), в виде обобщенного приема поиска решения задачи (который формируется к концу 5-го класса).

Обобщенный прием поиска решения задачи (выполните одно или несколько из следующих действий):

изучите содержание задачи, используя рисунок, чертеж, схему, краткую

запись или другую наглядную иллюстрацию содержания;

если нужно уточните формулировку задачи, определите, если можно тип

задачи и вспомните известный прием ее решения и другую известную информацию, применимую к решению задачи данного типа;

соберите дополнительную информацию из опыта решения других типов

задач, преобразуйте информацию с учетом специфики данной задачи;

проведите общий анализ от вопроса к условию; можно использовать метод проб и ошибок;

разделите, если можно, условие или требование задачи на части, составьте план решения каждой из них, затем объедините;

вспомните задачу, аналогичную данной, прием решения которой известен, сравните их и на этой основе составьте план решения;

7) временно измените условие или требование задачи так, чтобы можно было сравнить полученную задачу с данной; затем использовать отмеченный выше прием аналогии;

8) преобразуйте условие задачи с целью его сближения с вопросом;

преобразуйте вопрос задачи с целью его сближения с условием;

10) замените понятия, содержащиеся в условии или вопросе задачи, их определениями;

выберите те определения понятий, которые подсказывают (или сокращают) путь рассуждений или замените определение понятия его признаком;

Страницы: 1 2 3 4 5 6 7

Новые статьи:

Единство воспитательных воздействий
Этот принцип, называемый также принципом координации усилий школы, семьи и общественности или, в другом варианте принципом совместной деятельности учителей, общественных организаций и семьи по воспитанию подрастающих поколений требует, чтобы все лица, организации, общественные институты причастные ...

Комплекс коррекционных занятий по устранению недостатков слухового восприятия у дошкольников с амблиопией и косоглазием в процессе социально-бытовой ориентировки
Коррекционные занятия по социально-бытовой ориентировке проводятся с использованием всех общепедагогических методов и их сочетаний, но с учетом их коррекционной направленности при обучении детей с нарушением зрения. Из словесных методов наиболее предпочтительным является беседа. Она может быть ввод ...

Педагогические взгляды Демокрита
Демокрит был выдающимся древнегреческим философом-материалистом, создателем атомистической теории. По дошедшим до нас отрывкам его многочисленных сочинений можно видеть, что Демокрит разрабатывал все отрасли тогдашнего знания: известны его труды по философии, математике, физике, биологии, медицине, ...

Как Тейлор Свифт стала человеком года... в образовании

Ей уже посвящают учебные курсы в Гарварде, Стэнфорде и других известных вузах! В том числе — юридические и предпринимательские. Рассказываем, почему.

Разделы

Copyright © 2025 - All Rights Reserved - www.alfaeducation.ru