Учёные десятилетиями пытаются ответить на вопрос, полезно ли включать фоновую музыку на учебных занятиях. Рассказываем, что об этом известно.
Многие преподаватели и тренеры убеждены в учебной пользе от провалов и неудач. Но чтобы эта польза действительно была, нужно соблюсти ряд условий.
Концепция модернизации российского образования на период до 2010 года определяет цели общего образования на современном этапе. Она подчеркивает необходимость «ориентации образования не только на усвоение обучающимися определенной суммы знаний, но и на развитие его личности, его познавательных и созидательных способностей». Одной из основных задач обучения математике в школе является формирование у школьников сознательных и прочных вычислительных навыков, которые являются основополагающим элементом вычислительной культуры человека.
Сегодня всё меньше и меньше внимания в новых экспериментальных и вариативных учебниках по математике уделяется формированию у учащихся вычислительных навыков, как устных, так и письменных. Постепенно снижается подготовленность детей в данном направлении: возрастает число ошибок в определении порядка действий в выражениях, снижается уровень сформированности умения решать текстовые задачи (в частности за счёт ухудшения техники чтения, вычислительных умений). Задача формирования прочных и осознанных вычислительных умений и навыков отодвинута в них на второй план. Способы организации вычислительной деятельности по-прежнему ориентированы на показ образца вычислительного приема, отработку частных способов вычислений, использование тренировочных упражнений репродуктивного характера».
Формирование вычислительных умений и навыков - сложный длительный процесс, эффективность которого во многом зависит от индивидуальных особенностей ребенка, уровня его подготовки и способов организации вычислительной деятельности.
На современном этапе развития начального образования необходимо выбирать такие способы организации вычислительной деятельности младших школьников, которые способствуют не только формированию прочных осознанных вычислительных умений и навыков, но и всестороннему развитию личности ребенка.
При выборе способов организации вычислительной деятельности учителю необходимо отдавать предпочтение обучающим заданиям, в которых доминирует познавательная мотивация, ориентироваться на развивающий характер работы, учитывать индивидуальные особенности ребенка, его жизненный опыт, особенности детского мышления.
Вычислительные задания должны характеризоваться вариативностью формулировок, неоднозначностью решений, выявлением разнообразных закономерностей и зависимостей, использованием различных моделей (предметных, графических, символических) [19, c.123].
Безусловно, навык формируется в процессе многократных упражнений, тем не менее, при выполнении тренировочных упражнений не следует ослаблять работу и над развитием учащихся.
Этого можно достигнуть, используя в процессе обучения такие задания, которые побуждают учащихся не только к воспроизведению, но и требуют наблюдения, анализа, сравнения.
Предъявление учащимся проблемных заданий практического характера своим содержанием уже вызывает интерес учащихся, вовлекает в активную познавательную деятельность, т.е. создает проблемную ситуацию.
Проблемное задание - это учебное задание, составляемое преподавателем, методистом, автором учебного пособия в форме проблемной задачи или проблемного вопроса в целях постановки обучаемых в проблемную ситуацию. В процессе выполнения заданий у учащихся выявляются затруднения, возникает познавательный интерес и потребность в решении встретившейся проблемной задачи [24, c. 72].
Проблемные задания, как видим, вводят учащихся в предстоящую частично поисковую или исследовательскую работу, создавая психологически благоприятную атмосферу для дальнейших занятий.
В проблемном обучении выделяют три метода: проблемное изложение, частично-поисковый и исследовательский (наиболее известна номенклатура методов, предлагаемая М.Н. Скаткиным и И.Я. Лернером).
Проблемное изложение представляет собой промежуточный метод, переходный от объяснительно-иллюстративного типа к собственно проблемному обучению. При проблемном изложении даются не готовые знания (это характерно для информационного изложения), а раскрывается проблема как поиск научной истины. Т.е. в связи с чем, когда, как возникла проблема (знание о незнании, затруднение в объяснении какого-то явления, процесса), какие выдвигались версии, гипотезы, как они проверялись, какие были споры исследователей, к какому выводу они пришли, как трактуется в настоящее время решение той же проблемы. Вместе с преподавателем учащиеся следят за процессом поиска, рассуждают, поддерживают обоснование одной версии и отвергают другую как несостоятельную в каком-то отношении. Словом, учащиеся оказываются в роли участников (или, точнее, соучастников) поиска истины, первооткрывателей.
Разработка в подгруппах содержания дидактических игр по ознакомлению дошкольников
с предметным миром
Успешное руководство дидактическими играми, прежде всего, предусматривает отбор и продумывание их программного содержания, четкое определение задач, определение места и роли в целостном воспитательном процессе, взаимодействие и другими играми и формами обучения. Оно должно быть направлено на развит ...
Развитие творческих способностей учащихся начальных классов
В данной статье рассматривается проблема развития творческих способностей учащихся путем реализации авторской образовательной программы научно – познавательного направления внеучебной деятельности «Живое слово». Данная программа составлена автором статьи на основе многолетнего опыта работы по разви ...
Внеклассная работа. Занимательные опыты на уроках химии
Внеклассная работа на уроках химии имеет большое образовательное и воспитательное значение. Она углубляет и расширяет полученные на уроке знания, приучает к самостоятельной творческой работе, вносит в нее элементы исследовательских исканий. Каждый школьник стремится полнее и глубже познать окружающ ...
Ей уже посвящают учебные курсы в Гарварде, Стэнфорде и других известных вузах! В том числе — юридические и предпринимательские. Рассказываем, почему.